سوال شب ۳
سلام ! دونقطه دی
مثل دیروز اول راه شب گذشته رو می گیم ( اگر به سوال به مقدار کافی فکر نکردین، نخونین که براتون لوث نشه !=) ) :
اول از همه, اگر دو تا زیر مجموعه ی متمایز پیدا بشه که در شرایط سوال صدق کنه, دو زیرمجموعه ی مجزا هم پیدا میشه. کافیه اشتراکشون رو از هر دو حذف کنیم.
حالا در کل 2M زیرمجموعه داریم. هر کدوم از زیرمجموعه ها مثل S رو متناظر با یک n+1 تایی مرتب (a0, a1 , ... , an) می کنیم, که ai برابر sigma (Sj) i هست.
ai حداقل 0 و حداکثر M * M i = M i + 1 هست, پس حداکثر M i + 1 + 1 <= M n + 2 حالت دارد ( M > 1 ). در نتیجه تعداد n + 1 تایی های معتبر از M n*n + 3*n + 2 بیستر نیست.
پس کافیه 2M > M n*n + 3*n + 2 تا طبق اصل لانه کبوتری 2 تا زیرمجموعه درست پیدا بشن. تابع 2M نمایی هست ولی تابع M n*n + 3*n + 2 چندجمله ای, پس پیدا می شه M که نا مساوی گفته شده برقرار بشه !
خب , بالاخره می رسیم به سوال امشب دونقطه دی :
خانه های یک جدول مربعی n x n رو با اعداد صحیح پر کرده ایم , به طوری که اختلاف عدد هر دو خانه ی مجاور ضلعی , از 1 بیشتر نشود.
الف ) اثبات کنین عددی وحود داره که حداقل کف n/2 بار در جدول ظاهر شده.
ب ) اثبات کنین عددی وحود داره که حداقل n بار در جدول ظاهر شده.
نویسنده: مهرشاد =) (راه سوال دیشب هم از میکائیل )
۱۳۹۷/۱۰/۱۹ · ۲۱:۵۰